7.1 Integration By Parts/48: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
\int_{}^{} \left(x^{n} e^{x} \right)dx = x^{n} e^{x} - n\int_{}^{} \left(x^{n-1} e^{x}\right)dx | \int_{}^{} \left(x^{n} e^{x} \right)dx = x^{n} e^{x} - n\int_{}^{} \left(x^{n-1} e^{x}\right)dx | ||
</math> | |||
<math> | |||
\int_{}^{} \left(x^{n} e^{x} \right)dx | |||
</math> | </math> | ||
Latest revision as of 16:48, 29 November 2022
Prove