7.1 Integration By Parts/48: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 4: Line 4:
\int_{}^{} \left(x^{n} e^{x} \right)dx = x^{n} e^{x} - n\int_{}^{} \left(x^{n-1} e^{x}\right)dx
\int_{}^{} \left(x^{n} e^{x} \right)dx = x^{n} e^{x} - n\int_{}^{} \left(x^{n-1} e^{x}\right)dx


</math>
<math>
\int_{}^{} \left(x^{n} e^{x} \right)dx
</math>
</math>



Latest revision as of 16:48, 29 November 2022

Prove