7.1 Integration By Parts/48: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(6 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
Prove | |||
<math> | <math> | ||
\int_{}^{} \left(x^{n} e^{x} \right)dx = x^{n} e^{x} - n\int_{}^{} \left(x^{n-1} e^{x}\right)dx | \int_{}^{} \left(x^{n} e^{x} \right)dx = x^{n} e^{x} - n\int_{}^{} \left(x^{n-1} e^{x}\right)dx | ||
</math> | |||
<math> | |||
\int_{}^{} \left(x^{n} e^{x} \right)dx | |||
</math> | </math> | ||
Line 8: | Line 13: | ||
\begin{align} | \begin{align} | ||
u &= x^{n} \quad dv= e^{x} dx \\[2ex] | u &= x^{n} \quad & dv= e^{x} dx \\[2ex] | ||
du &=n x^{n-1} dx \quad v=e^x \\[2ex] | du &=n x^{n-1} dx \quad & v=e^x \\[2ex] | ||
\end{align} | \end{align} | ||
Line 16: | Line 21: | ||
<math> | <math> | ||
\begin{align} | |||
\int_{}^{} \left(x^{n} e^{x} \right)dx = n^{n}e^{x} - \int_{}^{} \left(x^{n-1}e^{x}\right)dx | \int_{}^{} \left(x^{n} e^{x} \right)dx &= x^{n}e^{x} - \int_{}^{} \left(n x^{n-1}e^{x}\right)dx \\[2ex] | ||
&= x^{n}e^{x} - n \int_{}^{} \left(x^{n-1}e^{x}\right)dx \\[2ex] | |||
\end{align} | |||
</math> | </math> |
Latest revision as of 16:48, 29 November 2022
Prove