7.1 Integration By Parts/48: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
Prove
<math>
<math>


\int_{}^{} \left(x^{n} e^{x} \right)dx = x^{n}e^{x} - n\int_{}^{} \left(x^{n-1} e^{x}\right)dx
\int_{}^{} \left(x^{n} e^{x} \right)dx = x^{n} e^{x} - n\int_{}^{} \left(x^{n-1} e^{x}\right)dx


</math>
<math>
\int_{}^{} \left(x^{n} e^{x} \right)dx
</math>
<math>
\begin{align}
u &= x^{n} \quad & dv= e^{x} dx \\[2ex]
du &=n x^{n-1} dx      \quad & v=e^x \\[2ex]
\end{align}
</math>
<math>
\begin{align}
\int_{}^{} \left(x^{n} e^{x} \right)dx &= x^{n}e^{x} - \int_{}^{} \left(n x^{n-1}e^{x}\right)dx \\[2ex]
&= x^{n}e^{x} - n \int_{}^{} \left(x^{n-1}e^{x}\right)dx \\[2ex]
\end{align}
</math>
</math>

Latest revision as of 16:48, 29 November 2022

Prove