7.1 Integration By Parts/48: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
(Created page with "\int_{}^{} \left(x^{n} e^{x} \right)dx")
 
No edit summary
 
(13 intermediate revisions by the same user not shown)
Line 1: Line 1:
\int_{}^{} \left(x^{n} e^{x} \right)dx
Prove
<math>
 
\int_{}^{} \left(x^{n} e^{x} \right)dx = x^{n} e^{x} - n\int_{}^{} \left(x^{n-1} e^{x}\right)dx
 
</math>
 
<math>
\int_{}^{} \left(x^{n} e^{x} \right)dx
</math>
 
<math>
 
\begin{align}
u &= x^{n} \quad & dv= e^{x} dx \\[2ex]
du &=n x^{n-1} dx      \quad & v=e^x \\[2ex]
 
\end{align}
 
</math>
 
<math>
\begin{align}
 
\int_{}^{} \left(x^{n} e^{x} \right)dx &= x^{n}e^{x} - \int_{}^{} \left(n x^{n-1}e^{x}\right)dx \\[2ex]
&= x^{n}e^{x} - n \int_{}^{} \left(x^{n-1}e^{x}\right)dx \\[2ex]
 
\end{align}
</math>

Latest revision as of 16:48, 29 November 2022

Prove