7.1 Integration By Parts/30: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 14: Line 14:
</math>
</math>


<math> \int_{0}^{1}\frac{r^{3}}{\sqrt{4+r^{2}}}\cdot dr  ~~~ = ~~~  \int_{0}^{1}\frac{r}{2\sqrt{u}}\cdot dr  ~~~ = ~~~  \int_{0}^{1}\frac{u-4}{2\sqrt{u}}\cdot dr ~~~ = ~~~  \frac{}{}\frac{1}{2} \int_{0}^{1} \left (\frac{u}{\sqrt{u}} - \frac{4}{\sqrt{u}} \right ) \cdot dr </math>
<math> \int_{0}^{1}\frac{r^{3}}{\sqrt{4+r^{2}}}\cdot dr  ~~~ = ~~~  \int_{0}^{1}\frac{r}{2\sqrt{u}}\cdot dr  ~~~ = ~~~  \int_{0}^{1}\frac{u-4}{2\sqrt{u}}\cdot du ~~~ = ~~~  \frac{}{}\frac{1}{2} \int_{0}^{1} \left (\frac{u}{\sqrt{u}} - \frac{4}{\sqrt{u}} \right ) \cdot du </math>

Revision as of 12:04, 29 November 2022


Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int _{0}^{1}{\frac {r^{3}}{\sqrt {4+r^{2}}}}\cdot dr~~~=~~~\int _{0}^{1}{\frac {r}{2{\sqrt {u}}}}\cdot dr~~~=~~~\int _{0}^{1}{\frac {u-4}{2{\sqrt {u}}}}\cdot du~~~=~~~{\frac {}{}}{\frac {1}{2}}\int _{0}^{1}\left({\frac {u}{\sqrt {u}}}-{\frac {4}{\sqrt {u}}}\right)\cdot du}