7.1 Integration By Parts/30: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 9: | Line 9: | ||
r^{2} &= u-4 \\[2ex] | r^{2} &= u-4 \\[2ex] | ||
2r\cdotdr &= du | 2r \cdotdr &= du \\[2ex] | ||
du &= \frac{1}{\sqrt{1-x^2}}\;dx \\[2ex] | du &= \frac{1}{\sqrt{1-x^2}}\;dx \\[2ex] | ||
Revision as of 11:53, 29 November 2022
Failed to parse (unknown function "\cdotdr"): {\displaystyle \begin{align} u &= 4+r^{2} \\[2ex] r^{2} &= u-4 \\[2ex] 2r \cdotdr &= du \\[2ex] du &= \frac{1}{\sqrt{1-x^2}}\;dx \\[2ex] \end{align} }
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int _{0}^{1}{\frac {r^{3}}{\sqrt {4+r^{2}}}}\cdot dr~~~=~~~\int _{0}^{1}r^{3}\cdot {\frac {1}{\sqrt {4+r^{2}}}}\cdot dr}