7.1 Integration By Parts/30: Difference between revisions
No edit summary |
No edit summary |
||
| Line 8: | Line 8: | ||
\\[2ex] | \\[2ex] | ||
r^{2} &= u-4 \\[2ex] | r^{2} &= u-4 \\[2ex] | ||
2r &= du ;dr \\[2ex] | |||
du &= \frac{1}{\sqrt{1-x^2}}\;dx \\[2ex] | du &= \frac{1}{\sqrt{1-x^2}}\;dx \\[2ex] | ||
Revision as of 11:51, 29 November 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{0}^{1}\frac{r^{3}}{\sqrt{4+r^{2}}}\cdot dr }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &= 4+r^{2} \\[2ex] r^{2} &= u-4 \\[2ex] 2r &= du ;dr \\[2ex] du &= \frac{1}{\sqrt{1-x^2}}\;dx \\[2ex] \end{align} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{0}^{1}\frac{r^{3}}{\sqrt{4+r^{2}}}\cdot dr ~~~ = ~~~ \int_{0}^{1}r^{3}\cdot \frac{1}{\sqrt{4+r^{2}}}\cdot dr }