7.1 Integration By Parts/11: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
 
(16 intermediate revisions by the same user not shown)
Line 1: Line 1:
<math>
<math>
\int \text {arctan(4t)}dt
\int \text {arctan(4t)}dt
\cdot
</math>
</math>


Line 10: Line 9:
<math>
<math>
du= \frac{4}{1+(4t)^{2}} dt \qquad v=t
du= \frac{4}{1+(4t)^{2}} dt \qquad v=t
</math>
<math>
\int \text {arctan(4t)}dt = t \cdot \text {arctan(4t)}-4\int \frac{t}{1+16t^{2}} dt = t \cdot \text {arctan(4t)}-\frac{4}{32}\int\frac{1}{u} = t \cdot \text {arctan(4t)}-\frac{1}{8}\ln(u)= t \cdot \text {arctan(4t)}-\frac{1}{8}\ln(1+16t^{2})+C
</math>
</math>


<math>
<math>
\begin{align}
\begin{align}
\int \text {arctan(4t)}dt = \text {tarctan(4t)}-4\int \frac{t}{1+16t^{2}} dt = \text {tarctan(4t)}-\frac{4}{32}\int\frac{1}{u} \\[1ex]
& u=1+16t^{2} \\ [1ex]
 
& du=32t dt \\ [1ex]
&= \text {tarctan(4t)}-\frac{1}{8}\ln(u)= \text {tarctan(4t)}-\frac{1}{8}\ln(1+16t^{2})+C \\[1ex]
& \frac{1}{32}du=t dt  
 
& \qquad u=1+16t^{2} \\[1ex]
& \qquad du=32t dt \\[1ex]
& \qquad \frac{1}{32}du=t dt  
 
\end{align}
\end{align}
</math>
</math>

Latest revision as of 05:55, 29 November 2022