7.1 Integration By Parts/11: Difference between revisions
Jump to navigation
Jump to search
(Created page with "<math> \int(arctan (4t)) dt </math> <math> \begin{align} \pi\int_1^2\left[\left(2-\frac{1}{2}x\right)^2\right]dx & = \pi\int_1^2\left[\left(4-2x+\frac{1}{4}x^2\right)\right]dx \\[2ex] &= \pi\left[4x-x^2+\frac{1}{12}x^3\right]\Bigg|_1^2 \\[2ex] &= \pi\left[\left(4(2)-(2)^2+\frac{1}{12}(2)^3\right)-\left(4(1)-(1)^2+\frac{1}{12}(1)^3\right)\right] \\[2ex] &= \pi\left[\left(8-4+\frac{8}{12}\right)-\left(4-1+\frac{1}{12}\right)\right] \\[2ex] &= \pi\left[4+\frac{8}{12}-3-\f...") |
No edit summary |
||
(68 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<math> | <math> | ||
\int | \int \text {arctan(4t)}dt | ||
</math> | </math> | ||
<math> | <math> | ||
\ | u= \text {arctan(4t)} \qquad dv=dt | ||
</math> <br><br> | |||
<math> | |||
du= \frac{4}{1+(4t)^{2}} dt \qquad v=t | |||
</math> | |||
<math> | |||
\int \text {arctan(4t)}dt = t \cdot \text {arctan(4t)}-4\int \frac{t}{1+16t^{2}} dt = t \cdot \text {arctan(4t)}-\frac{4}{32}\int\frac{1}{u} = t \cdot \text {arctan(4t)}-\frac{1}{8}\ln(u)= t \cdot \text {arctan(4t)}-\frac{1}{8}\ln(1+16t^{2})+C | |||
</math> | |||
<math> | |||
\begin{align} | |||
& u=1+16t^{2} \\ [1ex] | |||
& du=32t dt \\ [1ex] | |||
& \frac{1}{32}du=t dt | |||
\end{align} | \end{align} | ||
</math> | </math> |
Latest revision as of 05:55, 29 November 2022