7.1 Integration By Parts/11: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 13: Line 13:
<math>
<math>
\begin{align}
\begin{align}
\int \text {arctan(4t)}dt = \text {tarctan(4t)}-4\int \frac{t}{1+16t^{2}} dt = \text {tarctan(4t)}-\frac{4}{32}\int\frac{1}{u} \\[1ex]
\int \text {arctan(4t)}dt = \text {tarctan(4t)}-4\int \frac{t}{1+16t^{2}} dt = \text {tarctan(4t)}-\frac{4}{32}\int\frac{1}{u} \\[ex]


&= \text {tarctan(4t)}-\frac{1}{8}in(u)= \text {tarctan(4t)}-\frac{1}{8}in(1+16t^{2})+C \\[1ex]
&= \text {tarctan(4t)}-\frac{1}{8}in(u)= \text {tarctan(4t)}-\frac{1}{8}in(1+16t^{2})+C \\[1ex]

Revision as of 05:17, 29 November 2022



Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. TeX parse error: Bracket argument to \\ must be a dimension"): {\displaystyle {\begin{aligned}\int {\text{arctan(4t)}}dt={\text{tarctan(4t)}}-4\int {\frac {t}{1+16t^{2}}}dt={\text{tarctan(4t)}}-{\frac {4}{32}}\int {\frac {1}{u}}\\[ex]&={\text{tarctan(4t)}}-{\frac {1}{8}}in(u)={\text{tarctan(4t)}}-{\frac {1}{8}}in(1+16t^{2})+C\\[1ex]&\qquad u=1+16t^{2}\\[1ex]&\qquad du=32tdt\\[1ex]&\qquad {\frac {1}{32}}du=tdt\end{aligned}}}