7.1 Integration By Parts/11: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 12: Line 12:


<math>
<math>
\begin{align}
\int \text {arctan(4t)}dt = \text {tarctan(4t)}-4\int \frac{t}{1+16t^{2}} dt\\[1ex]
\int \text {arctan(4t)}dt = \text {tarctan(4t)}-4\int \frac{t}{1+16t^{2}} dt\\[1ex]
</math>


&= \pi\left[4x-x^2+\frac{1}{12}x^3\right]\Bigg|_1^2 \\[1ex]
 
&= \text {tarctan(4t)} \\[1ex]
&= \pi\left[\left(4(2)-(2)^2+\frac{1}{12}(2)^3\right)-\left(4(1)-(1)^2+\frac{1}{12}(1)^3\right)\right] \\[2ex]
&= \pi\left[\left(4(2)-(2)^2+\frac{1}{12}(2)^3\right)-\left(4(1)-(1)^2+\frac{1}{12}(1)^3\right)\right] \\[2ex]
&= \pi\left[\left(8-4+\frac{8}{12}\right)-\left(4-1+\frac{1}{12}\right)\right] \\[2ex]
&= \pi\left[\left(8-4+\frac{8}{12}\right)-\left(4-1+\frac{1}{12}\right)\right] \\[2ex]

Revision as of 04:59, 29 November 2022



Failed to parse (syntax error): {\displaystyle \int \text {arctan(4t)}dt = \text {tarctan(4t)}-4\int \frac{t}{1+16t^{2}} dt\\[1ex] }


&= \text {tarctan(4t)} \\[1ex] &= \pi\left[\left(4(2)-(2)^2+\frac{1}{12}(2)^3\right)-\left(4(1)-(1)^2+\frac{1}{12}(1)^3\right)\right] \\[2ex] &= \pi\left[\left(8-4+\frac{8}{12}\right)-\left(4-1+\frac{1}{12}\right)\right] \\[2ex] &= \pi\left[4+\frac{8}{12}-3-\frac{1}{12}\right]= \pi\left[1+\frac{7}{12}\right] \\[2ex] &= \pi\left[\frac{12}{12}+\frac{7}{12}\right]= \pi\left[\frac{19}{12}\right] \\[2ex] &= \frac{19\pi}{12}

\end{align} </math>