7.1 Integration By Parts/11: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 12: | Line 12: | ||
<math> | <math> | ||
\int \text {arctan(4t)}dt = \text {tarctan(4t)}-4\int \frac{t}{1+16t^{2}} dt\\[1ex] | \int \text {arctan(4t)}dt = \text {tarctan(4t)}-4\int \frac{t}{1+16t^{2}} dt\\[1ex] | ||
</math> | |||
&= \ | |||
&= \text {tarctan(4t)} \\[1ex] | |||
&= \pi\left[\left(4(2)-(2)^2+\frac{1}{12}(2)^3\right)-\left(4(1)-(1)^2+\frac{1}{12}(1)^3\right)\right] \\[2ex] | &= \pi\left[\left(4(2)-(2)^2+\frac{1}{12}(2)^3\right)-\left(4(1)-(1)^2+\frac{1}{12}(1)^3\right)\right] \\[2ex] | ||
&= \pi\left[\left(8-4+\frac{8}{12}\right)-\left(4-1+\frac{1}{12}\right)\right] \\[2ex] | &= \pi\left[\left(8-4+\frac{8}{12}\right)-\left(4-1+\frac{1}{12}\right)\right] \\[2ex] |
Revision as of 04:59, 29 November 2022
Failed to parse (syntax error): {\displaystyle \int \text {arctan(4t)}dt = \text {tarctan(4t)}-4\int \frac{t}{1+16t^{2}} dt\\[1ex] }
&= \text {tarctan(4t)} \\[1ex]
&= \pi\left[\left(4(2)-(2)^2+\frac{1}{12}(2)^3\right)-\left(4(1)-(1)^2+\frac{1}{12}(1)^3\right)\right] \\[2ex]
&= \pi\left[\left(8-4+\frac{8}{12}\right)-\left(4-1+\frac{1}{12}\right)\right] \\[2ex]
&= \pi\left[4+\frac{8}{12}-3-\frac{1}{12}\right]= \pi\left[1+\frac{7}{12}\right] \\[2ex]
&= \pi\left[\frac{12}{12}+\frac{7}{12}\right]= \pi\left[\frac{19}{12}\right] \\[2ex]
&= \frac{19\pi}{12}
\end{align} </math>