7.1 Integration By Parts/54: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 24: Line 24:


<math>
<math>
\begin{align}
\int_{1}^{5} \left(5\ln(x) \right)dx = 5 \int_{1}^{5} \left(\ln(x) \right)dx = 5\left(x\ln(x)\bigg|_{1}^{5}- \int_{1}^{5} \left(\frac{x}{x} \right)dx \right) = 5\left(x\ln(x) \bigg|_{1}^{5}- x \bigg|_{1}^{5} \right) = 5\left(5\ln(5)-1\ln(1) - \left(5-1 \right) \right) = 25\ln(5)-20
\int_{1}^{5} \left(5\ln(x) \right)dx = 5 \int_{1}^{5} \left(\ln(x) \right)dx = 5\left(x\ln(x)\bigg|_{1}^{5}- \int_{1}^{5} \left(\frac{x}{x} \right)dx \right) = 5\left(x\ln(x) \bigg|_{1}^{5}- x \bigg|_{1}^{5} \right) = 5\left(5\ln(5)-1\ln(1) - \left(5-1 \right) \right) = 25\ln(5)-20
</math>


<math>
\begin{align}
u &= \ln(x) \quad dv= 1 dx \\
u &= \ln(x) \quad dv= 1 dx \\
du &= \frac{1}{x} dx \quad  v=x \\
du &= \frac{1}{x} dx \quad  v=x \\

Revision as of 04:17, 29 November 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle y=5\ln(x) , y=x\ln(x) }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} 5\ln(x) &=x\ln(x)\\[1ex] &x=5 \\[1ex] &x=1 \\[1ex] 5\ln(2) > 2\ln(2) \end{align} }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{1}^{5}\left(5\ln(x) -x\ln(x) \right)dx = \int_{1}^{5} \left(5\ln(x) \right)dx - \int_{1}^{5} \left(x\ln(x) \right)dx =25\ln(5)-20 - \left(\frac{25}{2}\ln(5) - 6 \right) = \frac{25}{2} \ln(5) -14 }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{1}^{5} \left(5\ln(x) \right)dx = 5 \int_{1}^{5} \left(\ln(x) \right)dx = 5\left(x\ln(x)\bigg|_{1}^{5}- \int_{1}^{5} \left(\frac{x}{x} \right)dx \right) = 5\left(x\ln(x) \bigg|_{1}^{5}- x \bigg|_{1}^{5} \right) = 5\left(5\ln(5)-1\ln(1) - \left(5-1 \right) \right) = 25\ln(5)-20 u &= \ln(x) \quad dv= 1 dx \\ du &= \frac{1}{x} dx \quad v=x \\ \end{align} }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{1}^{5} \left(x\ln(x) \right)dx = \frac{x^2\ln(x)}{2}\bigg|_{1}^{5} - \int_{1}^{5} \left(\frac{x^2}{2x} \right)dx = \frac{x^2\ln(x)}{2}\bigg|_{1}^{5} - \frac{1}{2}\int_{1}^{5} \left(x \right)dx = \frac{1\ln(1)}{2}-\frac{25\ln(5)}{2} -\left(\frac{1}{2}\right) \left( \frac{x^2}{2} \right) \bigg|_{1}^{5} = 0-\frac{25}{2}\ln(5) -\frac{1}{2}\left(\frac{25-1}{2}\right) = \frac{25}{2}\ln(5) - 6 }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &= \ln(x) \quad dv= x dx \\ du &= \frac{1}{x} \quad v=\frac{x^2}{2} \\ \end{align} }