7.1 Integration By Parts/54: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 36: Line 36:


<math>
<math>
\int_{1}^{5} \left(x\ln(x) \right)dx = \frac{x^2\ln(x)}{2}\bigg|_{1}^{5} - \int_{1}^{5} \left(\frac{x^2}{2x} \right)dx = \frac{x^2\ln(x)}{2}\bigg|_{1}^{5} - \frac{1}{2}\int_{1}^{5} \left(x \right)dx = 1\ln(1)-25\ln(5) -(\frac{1}{2}) \left( \frac{x^2}{2} \right) \bigg|_{1}^{5}
\int_{1}^{5} \left(x\ln(x) \right)dx = \frac{x^2\ln(x)}{2}\bigg|_{1}^{5} - \int_{1}^{5} \left(\frac{x^2}{2x} \right)dx = \frac{x^2\ln(x)}{2}\bigg|_{1}^{5} - \frac{1}{2}\int_{1}^{5} \left(x \right)dx = 1\ln(1)-25\ln(5) -\left(\frac{1}{2})\right \left( \frac{x^2}{2} \right) \bigg|_{1}^{5}


</math>
</math>

Revision as of 04:05, 29 November 2022

Failed to parse (syntax error): {\displaystyle \int_{1}^{5} \left(x\ln(x) \right)dx = \frac{x^2\ln(x)}{2}\bigg|_{1}^{5} - \int_{1}^{5} \left(\frac{x^2}{2x} \right)dx = \frac{x^2\ln(x)}{2}\bigg|_{1}^{5} - \frac{1}{2}\int_{1}^{5} \left(x \right)dx = 1\ln(1)-25\ln(5) -\left(\frac{1}{2})\right \left( \frac{x^2}{2} \right) \bigg|_{1}^{5} }