7.1 Integration By Parts/20: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
 
(9 intermediate revisions by the same user not shown)
Line 16: Line 16:


&= (x^{2}+1)(-e^{-x})\bigg|_{0}^{1} - 2\int_{0}^{1} (-e^{x})(x)dx \\[2ex]
&= (x^{2}+1)(-e^{-x})\bigg|_{0}^{1} - 2\int_{0}^{1} (-e^{x})(x)dx \\[2ex]
&= x \ln(x)^{n} - \int_{}^{} \left(n \ln(x)^{n-1} \right)dx \\[2ex]
 
&= x \ln(x)^{n} - n \int_{}^{} \left(\ln(x)^{n-1} \right)dx \\[2ex]
\end{align}
</math>
 
<math>
\begin{align}
u &= x \quad dv= -e^{-x}dx \\[2ex]
du &= dx        \qquad v= e^{-x} \\[2ex]
 
\end{align}
</math>
 
<math>
\begin{align}
 
&= (x^{2}+1)(-e^{-x})\bigg|_{0}^{1} - 2\left[(x)(e^{-x})\right]\bigg|_{0}^{1} - \int_{0}^{1} (e^{-x})dx \\[2ex]
&= -2e^{-1}+1 - \frac{2}{e} + 2(-e^{-1}+e^{0}) \\[2ex]
&= -\frac{2}{e} + 1 - \frac{2}{e} - \frac{2}{e} + 2 \\[2ex]
&= -\frac{6}{e} + 3


\end{align}
\end{align}
</math>
</math>

Latest revision as of 04:02, 29 November 2022