7.1 Integration By Parts/20: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
(Created page with "<math> \int_{0}^{1} \left(x^{2}+1\right)e^{-x}dx </math> <math> \begin{align} u &= \ln(x)^{n} \quad dv= 1dx \\[2ex] du &=1dx \qquad v=x \\[2ex] \end{align} </math> <math> \begin{align} \int_{}^{} \left(\ln(x)^{n}\right)dx &= x \ln(x)^{n} - \int_{}^{} \left((x \frac{n \ln(x)^{n-1}}{x}) \right)dx \\[2ex] &= x \ln(x)^{n} - \int_{}^{} \left(n \ln(x)^{n-1} \right)dx \\[2ex] &= x \ln(x)^{n} - n \int_{}^{} \left(\ln(x)^{n-1} \right)dx \\[2ex] \end{align} </math>")
 
No edit summary
 
(15 intermediate revisions by the same user not shown)
Line 6: Line 6:
<math>
<math>
\begin{align}
\begin{align}
u &= \ln(x)^{n} \quad dv= 1dx \\[2ex]
u &= x^{2}+1 \quad dv= e^{-x}dx \\[2ex]
du &=1dx       \qquad v=x \\[2ex]
du &= 2xdx       \qquad v= -e^{-x} \\[2ex]


\end{align}
\end{align}
Line 15: Line 15:
\begin{align}
\begin{align}


\int_{}^{} \left(\ln(x)^{n}\right)dx &= x \ln(x)^{n} - \int_{}^{} \left((x \frac{n \ln(x)^{n-1}}{x}) \right)dx \\[2ex]
&= (x^{2}+1)(-e^{-x})\bigg|_{0}^{1} - 2\int_{0}^{1} (-e^{x})(x)dx \\[2ex]
&= x \ln(x)^{n} - \int_{}^{} \left(n \ln(x)^{n-1} \right)dx \\[2ex]
 
&= x \ln(x)^{n} - n \int_{}^{} \left(\ln(x)^{n-1} \right)dx \\[2ex]
\end{align}
</math>
 
<math>
\begin{align}
u &= x \quad dv= -e^{-x}dx \\[2ex]
du &= dx       \qquad v= e^{-x} \\[2ex]
 
\end{align}
</math>
 
<math>
\begin{align}
 
&= (x^{2}+1)(-e^{-x})\bigg|_{0}^{1} - 2\left[(x)(e^{-x})\right]\bigg|_{0}^{1} - \int_{0}^{1} (e^{-x})dx \\[2ex]
&= -2e^{-1}+1 - \frac{2}{e} + 2(-e^{-1}+e^{0}) \\[2ex]
&= -\frac{2}{e} + 1 - \frac{2}{e} - \frac{2}{e} + 2 \\[2ex]
&= -\frac{6}{e} + 3


\end{align}
\end{align}
</math>
</math>

Latest revision as of 04:02, 29 November 2022