7.1 Integration By Parts/20: Difference between revisions
Jump to navigation
Jump to search
(Created page with "<math> \int_{0}^{1} \left(x^{2}+1\right)e^{-x}dx </math> <math> \begin{align} u &= \ln(x)^{n} \quad dv= 1dx \\[2ex] du &=1dx \qquad v=x \\[2ex] \end{align} </math> <math> \begin{align} \int_{}^{} \left(\ln(x)^{n}\right)dx &= x \ln(x)^{n} - \int_{}^{} \left((x \frac{n \ln(x)^{n-1}}{x}) \right)dx \\[2ex] &= x \ln(x)^{n} - \int_{}^{} \left(n \ln(x)^{n-1} \right)dx \\[2ex] &= x \ln(x)^{n} - n \int_{}^{} \left(\ln(x)^{n-1} \right)dx \\[2ex] \end{align} </math>") |
No edit summary |
||
(15 intermediate revisions by the same user not shown) | |||
Line 6: | Line 6: | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
u &= | u &= x^{2}+1 \quad dv= e^{-x}dx \\[2ex] | ||
du &= | du &= 2xdx \qquad v= -e^{-x} \\[2ex] | ||
\end{align} | \end{align} | ||
Line 15: | Line 15: | ||
\begin{align} | \begin{align} | ||
\int_{}^{} | &= (x^{2}+1)(-e^{-x})\bigg|_{0}^{1} - 2\int_{0}^{1} (-e^{x})(x)dx \\[2ex] | ||
&= | |||
&= | \end{align} | ||
</math> | |||
<math> | |||
\begin{align} | |||
u &= x \quad dv= -e^{-x}dx \\[2ex] | |||
du &= dx \qquad v= e^{-x} \\[2ex] | |||
\end{align} | |||
</math> | |||
<math> | |||
\begin{align} | |||
&= (x^{2}+1)(-e^{-x})\bigg|_{0}^{1} - 2\left[(x)(e^{-x})\right]\bigg|_{0}^{1} - \int_{0}^{1} (e^{-x})dx \\[2ex] | |||
&= -2e^{-1}+1 - \frac{2}{e} + 2(-e^{-1}+e^{0}) \\[2ex] | |||
&= -\frac{2}{e} + 1 - \frac{2}{e} - \frac{2}{e} + 2 \\[2ex] | |||
&= -\frac{6}{e} + 3 | |||
\end{align} | \end{align} | ||
</math> | </math> |
Latest revision as of 04:02, 29 November 2022