7.1 Integration By Parts/54: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 32: Line 32:
du &= \frac{1}{x} dx \quad  v=x \\
du &= \frac{1}{x} dx \quad  v=x \\


 
</math>
<math>
\int_{1}^{5} \left(x\ln(x) \right)dx = \frac{x^2\ln(x)}{2}\bigg|_{1}^{5} - \int_{1}^{5} \left(\frac{x^2}{2x} \right)dx = \frac{x^2\ln(x)}{2}\bigg|_{1}^{5} - \frac{1}{2}\int_{1}^{5} \left(x \right)dx\\
\int_{1}^{5} \left(x\ln(x) \right)dx = \frac{x^2\ln(x)}{2}\bigg|_{1}^{5} - \int_{1}^{5} \left(\frac{x^2}{2x} \right)dx = \frac{x^2\ln(x)}{2}\bigg|_{1}^{5} - \frac{1}{2}\int_{1}^{5} \left(x \right)dx\\



Revision as of 04:01, 29 November 2022

Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} u &= \ln(x) \quad dv= 1 dx \\ du &= \frac{1}{x} dx \quad v=x \\ } Failed to parse (syntax error): {\displaystyle \int_{1}^{5} \left(x\ln(x) \right)dx = \frac{x^2\ln(x)}{2}\bigg|_{1}^{5} - \int_{1}^{5} \left(\frac{x^2}{2x} \right)dx = \frac{x^2\ln(x)}{2}\bigg|_{1}^{5} - \frac{1}{2}\int_{1}^{5} \left(x \right)dx\\ u &= \ln(x) \quad dv= x dx \\ du &= \frac{1}{x} \quad v=\frac{x^2}{2} \\ \end{align} }