7.1 Integration By Parts/12: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 23: | Line 23: | ||
\int p^5 ln (p)dp \quad = \quad \frac{1}{6}p^6 ln(p) - \int p^6 \frac{1}{p} dp | \int p^5 ln (p)dp \quad = \quad \frac{1}{6}p^6 ln(p) - \int p^6 \frac{1}{p} dp | ||
\quad = \quad \frac{1}{6}p^6 ln(p)-\frac{1}{36}p^6+C | \quad = \quad \frac{1}{6}p^6 ln(p)-\frac{1}{36}p^6+C | ||
<pre style="color: red"> | |||
Text is '''preformatted''' | |||
with a style and | |||
''markups'' '''''cannot''''' be done | |||
</pre> | |||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 03:48, 29 November 2022
Evaluate the integral
Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int p^5 ln (p)dp \quad = \quad \frac{1}{6}p^6 ln(p) - \int p^6 \frac{1}{p} dp \quad = \quad \frac{1}{6}p^6 ln(p)-\frac{1}{36}p^6+C <pre style="color: red"> Text is '''preformatted''' with a style and ''markups'' '''''cannot''''' be done </pre> \end{align} }