7.1 Integration By Parts/20: Difference between revisions
No edit summary Tag: Manual revert |
No edit summary |
||
| Line 15: | Line 15: | ||
\begin{align} | \begin{align} | ||
&= (x^{2}+1)(-e^{-x})\bigg|_{0}^{1} - 2\int_{0}^{1} (-e^{x})(x)dx \\[2ex] | |||
&= x \ln(x)^{n} - \int_{}^{} \left(n \ln(x)^{n-1} \right)dx \\[2ex] | &= x \ln(x)^{n} - \int_{}^{} \left(n \ln(x)^{n-1} \right)dx \\[2ex] | ||
&= x \ln(x)^{n} - n \int_{}^{} \left(\ln(x)^{n-1} \right)dx \\[2ex] | &= x \ln(x)^{n} - n \int_{}^{} \left(\ln(x)^{n-1} \right)dx \\[2ex] | ||
Revision as of 03:47, 29 November 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &= x^{2}+1 \quad dv= e^{-x}dx \\[2ex] du &= 2xdx \qquad v= -e^{-x} \\[2ex] \end{align} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} &= (x^{2}+1)(-e^{-x})\bigg|_{0}^{1} - 2\int_{0}^{1} (-e^{x})(x)dx \\[2ex] &= x \ln(x)^{n} - \int_{}^{} \left(n \ln(x)^{n-1} \right)dx \\[2ex] &= x \ln(x)^{n} - n \int_{}^{} \left(\ln(x)^{n-1} \right)dx \\[2ex] \end{align} }