7.1 Integration By Parts/12: Difference between revisions
No edit summary |
No edit summary |
||
| Line 22: | Line 22: | ||
\int p^5 ln (p)dp \quad = \quad \frac{1}{6}p^6 ln(p) - \int p^6 \frac{1}{p} dp | \int p^5 ln (p)dp \quad = \quad \frac{1}{6}p^6 ln(p) - \int p^6 \frac{1}{p} dp | ||
\quad = | \quad = \quad \frac{1}{6}p^6 ln(p)-\frac{1}{36}p^6+C | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Revision as of 03:45, 29 November 2022
Evaluate the integral
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int p^5 ln (p)dp \\[2ex] \end{align} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u= ln(p) \quad \quad dv=p^5dp \\[2ex] du = \frac{1}{p} \quad \quad \quad v= \frac{1}{6}p^6 \\[2ex] \end{align} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int p^5 ln (p)dp \quad = \quad \frac{1}{6}p^6 ln(p) - \int p^6 \frac{1}{p} dp \quad = \quad \frac{1}{6}p^6 ln(p)-\frac{1}{36}p^6+C \end{align} }