7.1 Integration By Parts/12: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 22: | Line 22: | ||
\int p^5 ln (p)dp \quad = \quad \frac{1}{6}p^6 ln(p) - \int p^6 \frac{1}{p} dp | \int p^5 ln (p)dp \quad = \quad \frac{1}{6}p^6 ln(p) - \int p^6 \frac{1}{p} dp | ||
\quad = \quad \frac{1}{6}p^6 ln(p)-\frac{1}{36}p^6+C | \quad = <pre style="color: red"> \quad \frac{1}{6}p^6 ln(p)-\frac{1}{36}p^6+C </pre> | ||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 03:45, 29 November 2022
Evaluate the integral
Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int p^5 ln (p)dp \quad = \quad \frac{1}{6}p^6 ln(p) - \int p^6 \frac{1}{p} dp \quad = <pre style="color: red"> \quad \frac{1}{6}p^6 ln(p)-\frac{1}{36}p^6+C </pre> \end{align} }