7.1 Integration By Parts/12: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
<math>
<math>
\begin{align}
\begin{align}
\int p^5 ln (p)dp
\int p^5 ln (p)dp \\[2ex]


\end{align}
\end{align}

Revision as of 03:32, 29 November 2022

Evaluate the integral.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int p^5 ln (p)dp \\[2ex] \end{align} }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u= ln(p) \quad \quad dv=p^5dp \\[2ex] du = \frac{1}{p} \quad \quad \quad v= \frac{1}{6}p^6 \\[2ex] \end{align} }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int p^5 ln (p)dp \\[2ex] &= \frac{1}{6}p^6 ln(p) - \int p^6 \frac{1}{p} dp \\[2ex] &= \frac{1}{6}p^6 ln(p)-\frac{1}{36}p^6+C \end{align} }