6.5 Average Value of a Function/1: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 14: Line 14:
f_{avg} &= \frac{1}{4} \int_{0}^{4} (4x-x^2) dx  \\[2ex]
f_{avg} &= \frac{1}{4} \int_{0}^{4} (4x-x^2) dx  \\[2ex]


&=\frac{1}{4} \left[\bigg( 4x-\frac{x^3}{3}\bigg)  \right]  = \frac{1}{4} \bigg(8-\frac{8}{3}\bigg)-\bigg(-8+\frac{8}{3}\bigg) \\[2ex]
&=\frac{1}{4} \left[\bigg( 4x-\frac{x^3}{3}\bigg)  \right]_0^4 = \frac{1}{4} \bigg(8-\frac{8}{3}\bigg)-\bigg(-8+\frac{8}{3}\bigg) \\[2ex]
&= \frac{1}{4} \left[\bigg( \frac{32}{4}\bigg)  \right]  \\[2ex]
&= \frac{1}{4} \left[\bigg( \frac{32}{4}\bigg)  \right]  \\[2ex]
&= \frac{8}{3}
&= \frac{8}{3}

Revision as of 02:46, 29 November 2022

Find the average value of the function on the given interval.