6.5 Average Value of a Function/1: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
Tag: Manual revert
No edit summary
Line 9: Line 9:


\begin{align}
\begin{align}
f_{avg} &= \frac{1}{4-0} \int_{0}^{4} (4x-x^2) dx  \\[2ex]


f_{avg} &= \frac{1}{4} \int_{0}^{4} (4x-x^2) dx  \\[2ex]
f_{avg} &= \frac{1}{4} \int_{0}^{4} (4x-x^2) dx  \\[2ex]
&=\frac{1}{4} \left[\bigg( 4x-\frac{x^3}{3}\bigg)  \right]  = \frac{1}{4} \bigg(8-\frac{8}{3}  \bigg) \\[2ex]
&=\frac{1}{4} \left[\bigg( 4x-\frac{x^3}{3}\bigg)  \right]  = \frac{1}{4} \bigg(8-\frac{8}{3}  \bigg) \\[2ex]
&= \frac{1}{4}[\frac{32}{4}] \\[2ex]
&= \frac{1}{4} \left[\bigg( \frac{32}{4}\bigg)  \right] \\[2ex]
&= 38 \frac{1}{3}
&= 38 \frac{1}{3}
\end{align}
\end{align}


</math>
</math>

Revision as of 02:31, 29 November 2022

Find the average value of the function on the given interval.