7.1 Integration By Parts/48: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 18: | Line 18: | ||
\begin{align} | \begin{align} | ||
\int_{}^{} \left(x^{n} e^{x} \right)dx &= x^{n}e^{x} - \int_{}^{} \left(n x^{n-1}e^{x}\right)dx | \int_{}^{} \left(x^{n} e^{x} \right)dx &= x^{n}e^{x} - \int_{}^{} \left(n x^{n-1}e^{x}\right)dx \\[2ex] | ||
&= x^{n}e^{x} - n \int_{}^{} \left(x^{n-1}e^{x}\right)dx | &= x^{n}e^{x} - n \int_{}^{} \left(x^{n-1}e^{x}\right)dx \\[2ex] | ||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 20:04, 28 November 2022