7.1 Integration By Parts/47: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 16: Line 16:


\int_{}^{} \left(\ln(x)^{n}\right)dx &= x \ln(x)^{n} - \int_{}^{} \left((x \frac{n \ln(x)^{n-1}}{x}) \right)dx \\[2ex]
\int_{}^{} \left(\ln(x)^{n}\right)dx &= x \ln(x)^{n} - \int_{}^{} \left((x \frac{n \ln(x)^{n-1}}{x}) \right)dx \\[2ex]
&= x \ln(x)^{n} - \int_{}^{} \left(n \ln(x)^{n-1} \right)dx  
&= x \ln(x)^{n} - \int_{}^{} \left(n \ln(x)^{n-1} \right)dx \\[2ex]
&= x \ln(x)^{n} - n \int_{}^{} \left(\ln(x)^{n-1} \right)dx  
&= x \ln(x)^{n} - n \int_{}^{} \left(\ln(x)^{n-1} \right)dx \\[2ex]


\end{align}
\end{align}
</math>
</math>

Revision as of 19:13, 28 November 2022