7.1 Integration By Parts/47: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 16: | Line 16: | ||
\int_{}^{} \left(\ln(x)^{n}\right)dx = x \ln(x)^{n} - \int_{}^{} \left((x \frac{n \ln(x)^{n-1}}{x}) \right)dx \\[2ex] | \int_{}^{} \left(\ln(x)^{n}\right)dx = x \ln(x)^{n} - \int_{}^{} \left((x \frac{n \ln(x)^{n-1}}{x}) \right)dx \\[2ex] | ||
&= x \ln(x)^{n} - \int_{}^{} \left(n \ln(x)^{n-1 | &= x \ln(x)^{n} - \int_{}^{} \left(n \ln(x)^{n-1} \right)dx | ||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 19:12, 28 November 2022