7.1 Integration By Parts/47: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 15: | Line 15: | ||
\begin{align} | \begin{align} | ||
\int_{}^{} \left(\ln(x)^{n}\right)dx = x \ln(x)^{n} - \int_{}^{} \left((x \frac{n \ln(x)^{n-1}}{x}) \right)dx | \int_{}^{} \left(\ln(x)^{n}\right)dx = x \ln(x)^{n} - \int_{}^{} \left((x \frac{n \ln(x)^{n-1}}{x}) \right)dx \\[2ex] | ||
&= x \ln(x)^{n} - \int_{}^{} \left(n \ln(x)^{n-1}} \right)dx | |||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 19:12, 28 November 2022
Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int_{}^{} \left(\ln(x)^{n}\right)dx = x \ln(x)^{n} - \int_{}^{} \left((x \frac{n \ln(x)^{n-1}}{x}) \right)dx \\[2ex] &= x \ln(x)^{n} - \int_{}^{} \left(n \ln(x)^{n-1}} \right)dx \end{align} }