7.1 Integration By Parts/47: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 13: | Line 13: | ||
<math> | <math> | ||
\int_{}^{} \left(\ln(x)^{n}\right)dx = x \ln(x)^{n} - \int_{}^{} \left((\frac{n | \int_{}^{} \left(\ln(x)^{n}\right)dx = x \ln(x)^{n} - \int_{}^{} \left((\frac{n \ln(x)^{n-1}}{x}) \rigt)dx | ||
</math> | </math> |
Revision as of 19:10, 28 November 2022
Failed to parse (unknown function "\rigt"): {\displaystyle \int_{}^{} \left(\ln(x)^{n}\right)dx = x \ln(x)^{n} - \int_{}^{} \left((\frac{n \ln(x)^{n-1}}{x}) \rigt)dx }