7.1 Integration By Parts/47: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 13: Line 13:


<math>
<math>
\int_{}^{} \left(\ln(x)^{n}\right)dx = x\ln(x)^{n} - \int_{}^{} \left(x \frac{n(\ln(x)^{n-1}}{x} \rigt)dx
\int_{}^{} \left(\ln(x)^{n}\right)dx = x \ln(x)^{n} - \int_{}^{} \left(\frac{n(\ln(x)^{n-1})}{x} \rigt)dx


</math>
</math>

Revision as of 19:09, 28 November 2022

Failed to parse (unknown function "\rigt"): {\displaystyle \int_{}^{} \left(\ln(x)^{n}\right)dx = x \ln(x)^{n} - \int_{}^{} \left(\frac{n(\ln(x)^{n-1})}{x} \rigt)dx }