7.1 Integration By Parts/47: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 14: | Line 14: | ||
<math> | <math> | ||
\int_{}^{} \left(\ln(x)^{n}\right)dx = x\ln(x)^{n} - \int_{}^{} \left(x * \frac{n(\ln(x)^{n-1}}{x} \rigt)dx | \int_{}^{} \left(\ln(x)^{n}\right)dx = x\ln(x)^{n} - \int_{}^{} \left(x * \frac{n(\ln(x)^{n-1}}{x} \rigt)dx | ||
</math> |
Revision as of 19:08, 28 November 2022
Failed to parse (unknown function "\rigt"): {\displaystyle \int_{}^{} \left(\ln(x)^{n}\right)dx = x\ln(x)^{n} - \int_{}^{} \left(x * \frac{n(\ln(x)^{n-1}}{x} \rigt)dx }