7.1 Integration By Parts/47: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 11: Line 11:
\end{align}
\end{align}
</math>
</math>
<math>
\int_{}^{} \left(\ln(x)^{n}\right)dx = x\ln(x)^{n} - \int_{}^{} \left(x * \frac{n(\ln(x)^{n-1}}{x} \rigt)dx

Revision as of 19:08, 28 November 2022

<math> \int_{}^{} \left(\ln(x)^{n}\right)dx = x\ln(x)^{n} - \int_{}^{} \left(x * \frac{n(\ln(x)^{n-1}}{x} \rigt)dx