7.1 Integration By Parts/10: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<math> f'(x)= \int_{}^{}\sin^{-1}(x)\cdot dx </math> <br><br> | <math> f'(x)= \int_{}^{}\sin^{-1}(x)\cdot dx </math> <br><br> | ||
<math>\int_{}^{}\sin^{-1}(x)dx</math> = <math>x\sin^{-1}(x)-\int_{}^{}\frac{x}{\sqrt{1-x^2}}dx</math> = <math>x\sin^{-1}(x)+\frac{1}{2}\int_{}^{}\frac{1}{\sqrt{u}}du</math> = <math>x\sin^{-1}(x)+\frac{1}{2}\int_{}^{}u^{-\frac{1}{2}}du</math> = <math>x\sin^{-1}(x)+\frac{1}{2}(2u^{frac{1}{2}}</math> = <math>x\sin^{-1}(x)+\sqrt{u}</math> = <math>x\sin^{-1}(x)+\sqrt{1-x^2}</math> | <math>\int_{}^{}\sin^{-1}(x)dx</math> = <math>x\sin^{-1}(x)-\int_{}^{}\frac{x}{\sqrt{1-x^2}}dx</math> = <math>x\sin^{-1}(x)+\frac{1}{2}\int_{}^{}\frac{1}{\sqrt{u}}du</math> = <math>x\sin^{-1}(x)+\frac{1}{2}\int_{}^{}u^{-\frac{1}{2}}du</math> = <math>x\sin^{-1}(x)+\frac{1}{2}(2u^{\frac{1}{2}})</math> | ||
= <math>x\sin^{-1}(x)+\sqrt{u}</math> = <math>x\sin^{-1}(x)+\sqrt{1-x^2}+C</math> | |||
<math>{u}</math> = <math>{1-x^2}</math> | |||
<math>{du}</math> = <math>{-2x}</math> | |||
<math>{-\frac{1}{2}du}</math> = <math>{x}dx</math> | |||
<math>{u}</math> = <math>{\sin^{-1}(x)}</math> , <math>{dv}</math> = <math>dx</math> | |||
<math>{du}</math> = <math>{\frac{1}{\sqrt{1-x^2}}dx}</math> , <math>{v}</math> = <math>{x}</math> |
Latest revision as of 01:49, 27 November 2022
= = = =
= =
=
=
=
= , =
= , =