7.1 Integration By Parts/10: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<math> f'(x)= \int_{}^{}\sin^{-1}(x)\cdot dx </math> <br><br> | <math> f'(x)= \int_{}^{}\sin^{-1}(x)\cdot dx </math> <br><br> | ||
<math>\int_{}^{}\sin^{-1}(x)dx</math> = <math>x\sin^{-1}(x)-\int_{}^{}\frac{x}{\sqrt{1-x^2}}dx</math> = <math>x\sin^{-1}(x)+\frac{1}{2}\int_{}^{}\frac{1}{\sqrt{u}}du</math> = <math>x\sin^{-1}(x)+\frac{1}{2}\int_{}^{}u^{-\frac{1}{2}}du</math> = <math>x\sin^{-1}(x)+\frac{1}{2}(2u^{frac{1}{2}}</math> = <math>x\sin^{-1}(x)+\sqrt{u}</math> = <math>x\sin^{-1}(x)+\sqrt{1-x^2}</math> | <math>\int_{}^{}\sin^{-1}(x)dx</math> = <math>x\sin^{-1}(x)-\int_{}^{}\frac{x}{\sqrt{1-x^2}}dx</math> = <math>x\sin^{-1}(x)+\frac{1}{2}\int_{}^{}\frac{1}{\sqrt{u}}du</math> = <math>x\sin^{-1}(x)+\frac{1}{2}\int_{}^{}u^{-\frac{1}{2}}du</math> = <math>x\sin^{-1}(x)+\frac{1}{2}(2u^{\frac{1}{2}}</math> = <math>x\sin^{-1}(x)+\sqrt{u}</math> = <math>x\sin^{-1}(x)+\sqrt{1-x^2}+C</math> |
Revision as of 01:48, 27 November 2022
= = = = = =