7.1 Integration By Parts/27: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math> f'(x)= \int_{0}^{\frac{1}{2}}\cos^{-1}(x)\cdot dx </math> <br><br>
<math> f'(x)= \int_{0}^{\frac{1}{2}}\cos^{-1}(x)\cdot dx </math> <br><br>
<math>\int_{0}^{\frac{1}{2}}\cos^{-1}(x)dx</math> = <math>x\cos^{-1}(x)\bigg|_{0}^{\frac{1}{2}}+\int_{0}^{\frac{1}{2}}\frac{x}{\sqrt{1-x^2}}dx</math> = <math>(\frac{1}{2}\cdot\frac{\pi}{3}){-\frac{1}{2}}\int_{1}^{\frac{3}{4}}\frac{1}{\sqrt{u}}du</math> = <math>{-2}{u}e^{u}\bigg|_{cos0}^{cos\pi}-(-2)\int_{cos0}^{cos\pi}e^{u}du</math>  
<math>\int_{0}^{\frac{1}{2}}\cos^{-1}(x)dx</math> = <math>x\cos^{-1}(x)\bigg|_{0}^{\frac{1}{2}}+\int_{0}^{\frac{1}{2}}\frac{x}{\sqrt{1-x^2}}dx</math> = <math>(\frac{1}{2}\cdot\frac{\pi}{3}){-\frac{1}{2}}\int_{1}^{\frac{3}{4}}\frac{1}{\sqrt{u}}du</math> = <math>{\frac{\pi}{6}}-\frac{1}{2}\int_{1}^{\frac{3}{4}}u^{-\frac{1}{2}}du</math>  


= <math>{-2}{u}e^{u}\bigg|_{cos0}^{cos\pi}+{2}e^{u}\bigg|_{cos0}^{cos\pi} du</math> = <math>{2}{u}e^{u}\bigg|_{cos\pi}^{cos0}-{2}e^{u}\bigg|_{cos\pi}^{cos0}du</math> = <math>{2}{cos(0)}e^{cos(0)}-{2}{cos(\pi)}e^{cos(\pi)}-{2}e^{cos(0)}+{2}e^{cos(\pi)}</math>  
= <math>{-\frac{\pi}{6}}-{(\frac{1}{2}}(2u^{\frac{1}{2}}))\bigg|_{1}^{\frac{3}{4}}</math> = <math>\frac{\pi}{6}-\frac{1}{2}(\sqrt{3}-1)</math> = <math>\frac{\pi}{6}-\frac{\sqrt{3}}{2}+1</math> = <math>\frac{1}{6}(\pi+6-3\sqrt{3})</math>
 
= <math>{2}(1)e^{1}-{2}(-1)e^{-1}-{2}e^{1}+{2}e^{-1}</math> = <math>{2}e^{1}+{2}e^{-1}-{2}e^{1}+{2}e^{-1}</math> = <math>{2}e^{-1}+{2}e^{-1}</math> = <math> {4}e^{-1} </math>

Revision as of 00:45, 27 November 2022



= = =

= = = =