7.1 Integration By Parts/27: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<math> f'(x)= \int_{0}^{\frac{1}{2}}\cos^{-1}(x)\cdot dx </math> <br><br> | <math> f'(x)= \int_{0}^{\frac{1}{2}}\cos^{-1}(x)\cdot dx </math> <br><br> | ||
<math>\int_{0}^{\frac{1}{2}}\cos^{-1}(x)dx</math> = <math>\ | <math>\int_{0}^{\frac{1}{2}}\cos^{-1}(x)dx</math> = <math>x\cos^{-1}(x)\bigg|_{0}^{\frac{1}{2}}+\int_{0}^{\frac{1}{2}}\frac{x}{\sqrt{1-x^2}}dx</math> = <math>{-2}\int_{cos0}^{cos\pi}e^{u}{u}du</math> = <math>{-2}{u}e^{u}\bigg|_{cos0}^{cos\pi}-(-2)\int_{cos0}^{cos\pi}e^{u}du</math> | ||
= <math>{-2}{u}e^{u}\bigg|_{cos0}^{cos\pi}+{2}e^{u}\bigg|_{cos0}^{cos\pi} du</math> = <math>{2}{u}e^{u}\bigg|_{cos\pi}^{cos0}-{2}e^{u}\bigg|_{cos\pi}^{cos0}du</math> = <math>{2}{cos(0)}e^{cos(0)}-{2}{cos(\pi)}e^{cos(\pi)}-{2}e^{cos(0)}+{2}e^{cos(\pi)}</math> | = <math>{-2}{u}e^{u}\bigg|_{cos0}^{cos\pi}+{2}e^{u}\bigg|_{cos0}^{cos\pi} du</math> = <math>{2}{u}e^{u}\bigg|_{cos\pi}^{cos0}-{2}e^{u}\bigg|_{cos\pi}^{cos0}du</math> = <math>{2}{cos(0)}e^{cos(0)}-{2}{cos(\pi)}e^{cos(\pi)}-{2}e^{cos(0)}+{2}e^{cos(\pi)}</math> | ||
= <math>{2}(1)e^{1}-{2}(-1)e^{-1}-{2}e^{1}+{2}e^{-1}</math> = <math>{2}e^{1}+{2}e^{-1}-{2}e^{1}+{2}e^{-1}</math> = <math>{2}e^{-1}+{2}e^{-1}</math> = <math> {4}e^{-1} </math> | = <math>{2}(1)e^{1}-{2}(-1)e^{-1}-{2}e^{1}+{2}e^{-1}</math> = <math>{2}e^{1}+{2}e^{-1}-{2}e^{1}+{2}e^{-1}</math> = <math>{2}e^{-1}+{2}e^{-1}</math> = <math> {4}e^{-1} </math> | ||
Revision as of 23:17, 25 November 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f'(x)= \int_{0}^{\frac{1}{2}}\cos^{-1}(x)\cdot dx }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{0}^{\frac{1}{2}}\cos^{-1}(x)dx}
= Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x\cos^{-1}(x)\bigg|_{0}^{\frac{1}{2}}+\int_{0}^{\frac{1}{2}}\frac{x}{\sqrt{1-x^2}}dx}
= Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle {-2}\int_{cos0}^{cos\pi}e^{u}{u}du}
= Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle {-2}{u}e^{u}\bigg|_{cos0}^{cos\pi}-(-2)\int_{cos0}^{cos\pi}e^{u}du}
= Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle {-2}{u}e^{u}\bigg|_{cos0}^{cos\pi}+{2}e^{u}\bigg|_{cos0}^{cos\pi} du} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle {2}{u}e^{u}\bigg|_{cos\pi}^{cos0}-{2}e^{u}\bigg|_{cos\pi}^{cos0}du} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle {2}{cos(0)}e^{cos(0)}-{2}{cos(\pi)}e^{cos(\pi)}-{2}e^{cos(0)}+{2}e^{cos(\pi)}}
= Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle {2}(1)e^{1}-{2}(-1)e^{-1}-{2}e^{1}+{2}e^{-1}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle {2}e^{1}+{2}e^{-1}-{2}e^{1}+{2}e^{-1}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle {2}e^{-1}+{2}e^{-1}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle {4}e^{-1} }