6.2 Volumes/1: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
(Created page with "<math> R = 1 </math> <math> \begin{align} r + f(y) &= 1\\[1ex] r &= 1-f(y)\\[1ex] r &= 1-y^2 \\ \end{align} </math> <math> \begin{align} \pi\int_0^1\left[(1)^2-(1-y^2)^2\right]dy & = \pi\int_0^1\left[(1-(1-2y^2+y^4)\right]dy = \pi\int_0^1\left[(2y^2-y^4)\right]dy \\[2ex] &= \pi\left[\frac{2y^3}{3}-\frac{y^5}{5}\right]\Bigg|_0^1 \\[2ex] &= \pi\left[\frac{2}{3}-\frac{1}{5}\right]= \pi\left[\frac{10}{15}-\frac{3}{15}\right] \\[2ex] &= \frac{7\pi}{15} \end{align} <...")
 
No edit summary
 
(92 intermediate revisions by the same user not shown)
Line 1: Line 1:
<math>
<math>
R = 1
y=2-\frac{1}{2}x,
y = 0, x = 1, x = 2; \text{about the x-axis}
</math>
</math>
<math>
\begin{align}
r + f(y) &= 1\\[1ex] 
r &= 1-f(y)\\[1ex]
r &= 1-y^2 \\
\end{align}
</math>


<math>
<math>
\begin{align}
\begin{align}
\pi\int_0^1\left[(1)^2-(1-y^2)^2\right]dy & = \pi\int_0^1\left[(1-(1-2y^2+y^4)\right]dy = \pi\int_0^1\left[(2y^2-y^4)\right]dy \\[2ex]
\pi\int_1^2\left[\left(2-\frac{1}{2}x\right)^2\right]dx & = \pi\int_1^2\left[\left(4-2x+\frac{1}{4}x^2\right)\right]dx \\[2ex]


&= \pi\left[\frac{2y^3}{3}-\frac{y^5}{5}\right]\Bigg|_0^1 \\[2ex]
&= \pi\left[4x-x^2+\frac{1}{12}x^3\right]\Bigg|_1^2 \\[2ex]
&= \pi\left[\frac{2}{3}-\frac{1}{5}\right]= \pi\left[\frac{10}{15}-\frac{3}{15}\right] \\[2ex]
&= \pi\left[\left(4(2)-(2)^2+\frac{1}{12}(2)^3\right)-\left(4(1)-(1)^2+\frac{1}{12}(1)^3\right)\right] \\[2ex]
&= \frac{7\pi}{15}
&= \pi\left[\left(8-4+\frac{8}{12}\right)-\left(4-1+\frac{1}{12}\right)\right] \\[2ex]
&= \pi\left[4+\frac{8}{12}-3-\frac{1}{12}\right]= \pi\left[1+\frac{7}{12}\right] \\[2ex]
&= \pi\left[\frac{12}{12}+\frac{7}{12}\right]= \pi\left[\frac{19}{12}\right] \\[2ex]
&= \frac{19\pi}{12}


\end{align}
\end{align}
</math>
</math>

Latest revision as of 04:10, 24 November 2022