6.2 Volumes/1: Difference between revisions
No edit summary Tag: Manual revert |
No edit summary |
||
| Line 1: | Line 1: | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
y=2-\frac{1}{2}x \\[ | y=2-\frac{1}{2}x \\[ex] | ||
y = 0, x = 1, x = 2; \text{about the x-axis} | y = 0, x = 1, x = 2; \text{about the x-axis} | ||
\end{align} | \end{align} | ||
Revision as of 04:06, 24 November 2022
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}y=2-{\frac {1}{2}}x\\[ex]y=0,x=1,x=2;{\text{about the x-axis}}\end{aligned}}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \pi\int_1^2\left[\left(2-\frac{1}{2}x\right)^2\right]dx & = \pi\int_1^2\left[\left(4-2x+\frac{1}{4}x^2\right)\right]dx \\[2ex] &= \pi\left[4x-x^2+\frac{1}{12}x^3\right]\Bigg|_1^2 \\[2ex] &= \pi\left[4(2)-(2)^2+\frac{1}{12}(2)^3-\left(4(1)-(1)^2+\frac{1}{12}(1)^3\right)\right] \\[2ex] &= \pi\left[8-4+\frac{8}{12}-\left(4-1+\frac{1}{12}\right)\right] \\[2ex] &= \pi\left[4+\frac{8}{12}-3-\frac{1}{12}\right]= \pi\left[1+\frac{7}{12}\right] \\[2ex] &= \pi\left[\frac{12}{12}+\frac{7}{12}\right]= \pi\left[\frac{19}{12}\right] \\[2ex] &= \frac{19\pi}{12} \end{align} }