6.2 Volumes/1: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math>
<math>
\begin{align}
 
y=2-\frac{1}{2}x, x-axis\\[1ex]
y=2-\frac{1}{2}x, x-axis\\[1ex]
y=0\\[1ex]
y=0\\[1ex]
x=1\\[1ex]
x=1\\[1ex]
x=2\\[1ex]
x=2\\[1ex]
\end{align}
 
</math>
</math>



Revision as of 03:37, 24 November 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle y=2-\frac{1}{2}x, x-axis\\[1ex] y=0\\[1ex] x=1\\[1ex] x=2\\[1ex] }


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \pi\int_1^2\left[(2-\frac{1}{2}x)^2\right]dy & = \pi\int_1^2\left[(4-2x+\frac{1}{4}x^2)\right]dx \\[2ex] &= \pi\left[4x-x^2+\frac{1}{12}x^3\right]\Bigg|_1^2 \\[2ex] &= \pi\left[4(2)-(2)^2+\frac{1}{12}(2)^3-\left(4(1)-(1)^2+\frac{1}{12}(1)^3\right)\right] \\[2ex] &= \pi\left[8-4+\frac{8}{12}-\left(4-1+\frac{1}{2}\right)\right] \\[2ex] &= \pi\left[4+\frac{8}{12}-3-\frac{1}{3}\right]= \pi\left[1+\frac{7}{12}\right] \\[2ex] &= \pi\left[\frac{12}{12}+\frac{7}{12}\right]= \pi\left[\frac{19}{12}\right] \\[2ex] &= \frac{19\pi}{12} \end{align} }