6.2 Volumes/1: Difference between revisions
No edit summary |
No edit summary |
||
| Line 12: | Line 12: | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
\pi\int_1^2\left[(2-\frac{1}{2})^ | \pi\int_1^2\left[(2-\frac{1}{2})^{2}\right]dy & = \pi\int_0^1\left[(1-(1-2y^2+y^4)\right]dy = \pi\int_0^1\left[(2y^2-y^4)\right]dy \\[2ex] | ||
&= \pi\left[\frac{2y^3}{3}-\frac{y^5}{5}\right]\Bigg|_0^1 \\[2ex] | &= \pi\left[\frac{2y^3}{3}-\frac{y^5}{5}\right]\Bigg|_0^1 \\[2ex] | ||
Revision as of 03:18, 24 November 2022
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}y=2-{\frac {1}{2}}x,x-axis\\[1ex]y=0\\[1ex]x=1\\[1ex]x=2\\\end{aligned}}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \pi\int_1^2\left[(2-\frac{1}{2})^{2}\right]dy & = \pi\int_0^1\left[(1-(1-2y^2+y^4)\right]dy = \pi\int_0^1\left[(2y^2-y^4)\right]dy \\[2ex] &= \pi\left[\frac{2y^3}{3}-\frac{y^5}{5}\right]\Bigg|_0^1 \\[2ex] &= \pi\left[\frac{2}{3}-\frac{1}{5}\right]= \pi\left[\frac{10}{15}-\frac{3}{15}\right] \\[2ex] &= \frac{7\pi}{15} \end{align} }