5.5 The Substitution Rule/55: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 19: Line 19:


\int_{0}^{\pi} \sec^2\left(\frac{t}{4}\right)dt
\int_{0}^{\pi} \sec^2\left(\frac{t}{4}\right)dt
 
&= 4\int_{0}^{\pi} \sec^2(u)du \\[2ex]


\end{align}
\end{align}

Revision as of 16:12, 4 October 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{0}^{\pi} \sec^2\left(\frac{t}{4}\right)dt }


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &= \frac{t}{4} \\[2ex] du &= \frac{1}{4}dt \\[2ex] 4du &=dx \end{align} }


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{0}^{\pi} \sec^2\left(\frac{t}{4}\right)dt &= 4\int_{0}^{\pi} \sec^2(u)du \\[2ex] \end{align} }

= 4\cdot \tan^2(u) &= 4\int_{0}^{\pi} \sec^2(u)du \\[2ex]