5.5 The Substitution Rule/33: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 19: Line 19:
&= \int (u^{\frac{1}{2}})du \\[2ex]
&= \int (u^{\frac{1}{2}})du \\[2ex]
&= -\frac{2}{3} u + c \\[2ex]
&= -\frac{2}{3} u + c \\[2ex]
&= -\frac{2}{3} (\cot{(x)}^{\frac{3}{2}}) +c
&= -\frac{2}{3} (\cot{(x)})^{\frac{3}{2}} +c
\end{align}
\end{align}
</math>
</math>

Revision as of 16:25, 29 September 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int {\sqrt{\cot(x)}} \csc^2{(x)}dx }


Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}u&=\cot {(x)}\\[2ex]du&=-csc^{2}{(x)}dx\\[2ex]dx&={\frac {du}{-csc^{2}{(x)}}}\\[2ex]\end{aligned}}}


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} &= \int {\sqrt{u}} \csc^2{(x)} \frac{du}{-csc{(x)}} &= - \int{(\sqrt{u})}du \\[2ex] &= \int (u^{\frac{1}{2}})du \\[2ex] &= -\frac{2}{3} u + c \\[2ex] &= -\frac{2}{3} (\cot{(x)})^{\frac{3}{2}} +c \end{align} }