5.5 The Substitution Rule/33: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 17: Line 17:
&= \int {\sqrt{u}}  \csc^2{(x)}  \frac{du}{-csc{(x)}}
&= \int {\sqrt{u}}  \csc^2{(x)}  \frac{du}{-csc{(x)}}
&= - \int{(\sqrt{u})}du \\[2ex]
&= - \int{(\sqrt{u})}du \\[2ex]
&= \int u^1/2
&= \int u^{\frac{1}{2}}
\end{align}
\end{align}
</math>
</math>

Revision as of 16:19, 29 September 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int {\sqrt{\cot(x)}} \csc^2{(x)}dx }


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &= \cot{(x)} \\[2ex] du &= -csc^2{(x)}dx \\[2ex] dx &= \frac{du}{-csc^2{(x)}} \\[2ex] \end{align} }


Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}&=\int {\sqrt {u}}\csc ^{2}{(x)}{\frac {du}{-csc{(x)}}}&=-\int {({\sqrt {u}})}du\\[2ex]&=\int u^{\frac {1}{2}}\end{aligned}}}