6.1 Areas Between Curves/15: Difference between revisions
No edit summary |
No edit summary |
||
| (12 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
[[File:Screen Shot 2022-09-28 at 4.31.18 PM.png|right|450px|]] | |||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
| Line 21: | Line 23: | ||
</math> | </math> | ||
<math>\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \left[(\tan(x)) - (2\sin(x))\right]dx = \int_{-\frac{\pi}{3}}^{0}\left[(\tan(x)) - (2\sin(x))\right]dx + \int_{0}^{\frac{\pi}{3}} \left[(2\sin(x)) - (\tan(x))\right]dx = \ | <math>\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \left[(\tan(x)) - (2\sin(x))\right]dx = \int_{-\frac{\pi}{3}}^{0}\left[(\tan(x)) - (2\sin(x))\right]dx + \int_{0}^{\frac{\pi}{3}} \left[(2\sin(x)) - (\tan(x))\right]dx = 2-\ln(2)-1-1-\ln(2)+2 = -2\ln(2)-2+4 = -2\ln(2)+2</math> | ||
| Line 28: | Line 30: | ||
\int_{-\frac{\pi}{3}}^{0}\left[(\tan(x)) - (2\sin(x))\right]dx \\[2ex] | \int_{-\frac{\pi}{3}}^{0}\left[(\tan(x)) - (2\sin(x))\right]dx \\[2ex] | ||
&= \left[\ln|sec(x)|+2\cos(x)\right]\Bigg|_{-\frac{\pi}{3}}^{0} \\[2ex] | &= \left[\ln|\sec(x)|+2\cos(x)\right]\Bigg|_{-\frac{\pi}{3}}^{0} \\[2ex] | ||
&= \left[\ln|sec(0)|+2\cos(0)\right]-\left[\ln|sec(-\frac{\pi}{3})+2\cos(-\frac{\pi}{3})|\right] \\[2ex] | &= \left[\ln|\sec(0)|+2\cos(0)\right]-\left[\ln|\sec(-\frac{\pi}{3})+2\cos(-\frac{\pi}{3})|\right] \\[2ex] | ||
&= \left[0+2\right]-\left[\ln(2)-2(\frac{1}{2})\right] = - | &= \left[0+2\right]-\left[\ln(2)-2(\frac{1}{2})\right] = 2-\ln(2)-1 \\[2ex] | ||
&= - | &= 2-\ln(2)-1 | ||
\end{align} | \end{align} | ||
| Line 44: | Line 46: | ||
\int_{0}^{\frac{\pi}{3}} \left[(2\sin(x)) - (\tan(x))\right]dx \\[2ex] | \int_{0}^{\frac{\pi}{3}} \left[(2\sin(x)) - (\tan(x))\right]dx \\[2ex] | ||
&= \left[-2\cos(x)-ln|sec(x)|\right]\Bigg|_{0}^{\frac{\pi}{3} \\[2ex] | &= \left[-2\cos(x)-\ln|\sec(x)|\right]\Bigg|_{0}^{\frac{\pi}{3}} \\[2ex] | ||
&= \left[ | &= \left[-2\cos(\frac{\pi}{3})-\ln|\sec(\frac{\pi}{3})|\right] + \left[2\cos(0)+\ln|\sec(0)|\right] \\[2ex] | ||
&= \left[ | &= \left[(-2)(1/2)-\ln(2)\right]+\left[2+0\right] = -1-\ln(2)+2 \\[2ex] | ||
&= \ | &= -1-\ln(2)+2 | ||
\end{align} | \end{align} | ||
Latest revision as of 23:34, 28 September 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} & \color{red}\mathbf{y=\tan(x)} & \color{royalblue}\mathbf{y= 2\sin(x)} \\ & x=-\frac{\pi}{3} & x=\frac{\pi}{3} \\ \end{align} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \left[(\tan(x)) - (2\sin(x))\right]dx }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \tan(x) &= 2\sin(x) \\ \tan(x)-2\sin(x) &= 0 \\ x &= 0 \\ \end{align} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \left[(\tan(x)) - (2\sin(x))\right]dx = \int_{-\frac{\pi}{3}}^{0}\left[(\tan(x)) - (2\sin(x))\right]dx + \int_{0}^{\frac{\pi}{3}} \left[(2\sin(x)) - (\tan(x))\right]dx = 2-\ln(2)-1-1-\ln(2)+2 = -2\ln(2)-2+4 = -2\ln(2)+2}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{-\frac{\pi}{3}}^{0}\left[(\tan(x)) - (2\sin(x))\right]dx \\[2ex] &= \left[\ln|\sec(x)|+2\cos(x)\right]\Bigg|_{-\frac{\pi}{3}}^{0} \\[2ex] &= \left[\ln|\sec(0)|+2\cos(0)\right]-\left[\ln|\sec(-\frac{\pi}{3})+2\cos(-\frac{\pi}{3})|\right] \\[2ex] &= \left[0+2\right]-\left[\ln(2)-2(\frac{1}{2})\right] = 2-\ln(2)-1 \\[2ex] &= 2-\ln(2)-1 \end{align} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{0}^{\frac{\pi}{3}} \left[(2\sin(x)) - (\tan(x))\right]dx \\[2ex] &= \left[-2\cos(x)-\ln|\sec(x)|\right]\Bigg|_{0}^{\frac{\pi}{3}} \\[2ex] &= \left[-2\cos(\frac{\pi}{3})-\ln|\sec(\frac{\pi}{3})|\right] + \left[2\cos(0)+\ln|\sec(0)|\right] \\[2ex] &= \left[(-2)(1/2)-\ln(2)\right]+\left[2+0\right] = -1-\ln(2)+2 \\[2ex] &= -1-\ln(2)+2 \end{align} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \text{Note: } \int\tan(x)dx=\int\frac{\sin(x)}{\cos(x)}dx=\ln|\sec(x)|+C}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &= \cos(x) \\[2ex] du &= -\sin(x) \\[2ex] -du &= \sin(x)dx \end{align} }