6.1 Areas Between Curves/25: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 15: | Line 15: | ||
\int_{1}^{-1}\left(\frac{2}{({x^2}+1)}\right) - \left(x^{2}\right) dx = \int_{1}^{-1}\left(2\cdot\frac{1}{(x^{2}+1)}\right)-\left(x^{2}\right) dx &= \left[(2\arctan(x)-\frac{x^{3}}{3})\right]\Bigg|_{-1}^{1} \\[2ex] | \int_{1}^{-1}\left(\frac{2}{({x^2}+1)}\right) - \left(x^{2}\right) dx = \int_{1}^{-1}\left(2\cdot\frac{1}{(x^{2}+1)}\right)-\left(x^{2}\right) dx &= \left[(2\arctan(x)-\frac{x^{3}}{3})\right]\Bigg|_{-1}^{1} \\[2ex] | ||
&= \left[ | &= \left[2\arctan(1)-\frac{(1)^{3}}{3}\right]-\left[(2\arctan(-1)-\frac{(-1)^{3}}{3}\right] \\[2ex] | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Revision as of 19:31, 23 September 2022
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\int _{1}^{-1}\left({\frac {2}{({x^{2}}+1)}}\right)-\left(x^{2}\right)dx=\int _{1}^{-1}\left(2\cdot {\frac {1}{(x^{2}+1)}}\right)-\left(x^{2}\right)dx&=\left[(2\arctan(x)-{\frac {x^{3}}{3}})\right]{\Bigg |}_{-1}^{1}\\[2ex]&=\left[2\arctan(1)-{\frac {(1)^{3}}{3}}\right]-\left[(2\arctan(-1)-{\frac {(-1)^{3}}{3}}\right]\\[2ex]\end{aligned}}}