5.5 The Substitution Rule/3: Difference between revisions
No edit summary |
No edit summary |
||
| (6 intermediate revisions by the same user not shown) | |||
| Line 5: | Line 5: | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
u=x^3+1 \\[2ex] | u &=x^3+1 \\[2ex] | ||
du &=3x^2dx | |||
\end{align} | \end{align} | ||
</math> | </math> | ||
| Line 11: | Line 12: | ||
<math> | <math> | ||
\int \frac{1}{3} du \sqrt{u} | \int \frac{1}{3} du \sqrt{u} | ||
</math> | |||
<math> | |||
\begin{align} | |||
\frac{1}{3} \int du (u^{\frac{1}{2}}) \\[2ex] | |||
=\frac{1}{2} u^\frac{3}{2} | |||
\end{align} | |||
</math> | |||
<math> | |||
\frac{1}{2}(x^3+1)^\frac{3}{2} +C | |||
</math> | </math> | ||
Latest revision as of 03:48, 23 September 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int x^2 \sqrt{x^3+1} dx }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &=x^3+1 \\[2ex] du &=3x^2dx \end{align} }
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int {\frac {1}{3}}du{\sqrt {u}}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{1}{3} \int du (u^{\frac{1}{2}}) \\[2ex] =\frac{1}{2} u^\frac{3}{2} \end{align} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}(x^3+1)^\frac{3}{2} +C }