6.1 Areas Between Curves/12: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 29: Line 29:
&= \left[\frac{4x^2}{2}\right]\Bigg|_{0}^{2} \\[2ex]
&= \left[\frac{4x^2}{2}\right]\Bigg|_{0}^{2} \\[2ex]
&= \left[2x^2\right]\Bigg|_{0}^{2} \\[2ex]
&= \left[2x^2\right]\Bigg|_{0}^{2} \\[2ex]
&= \left[16-\frac{16}{3}\right]-\left[-16+\frac{16}{3}\right] = 32-\frac{32}{3} \\[2ex]
&= \left[2(2)^2\right]-\left[2(0)^2\right] = 8-0 \\[2ex]
&= \frac{64}{3}
&= 8


\end{align}
\end{align}
</math>
</math>

Revision as of 23:26, 22 September 2022


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{0}^{2} \left[(4x-x^2) - (x^2)\right] dx}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} 4-x^2 &= x^2 \\ 4x-2x^2 &= 0 \\ 2x(2-x) &= 0 \\ x &= 0& x = 2 \end{align} }


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{0}^{2} \left[(4x-x^2) - (x^2)\right]dx = \int_{0}^{2} (4x)dx}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} &= \left[\frac{4x^2}{2}\right]\Bigg|_{0}^{2} \\[2ex] &= \left[2x^2\right]\Bigg|_{0}^{2} \\[2ex] &= \left[2(2)^2\right]-\left[2(0)^2\right] = 8-0 \\[2ex] &= 8 \end{align} }