5.5 The Substitution Rule/11: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
 
(18 intermediate revisions by the same user not shown)
Line 18: Line 18:
\begin{align}
\begin{align}


\int (x+1)\sqrt{2x+x^{2}}dx = \frac{1}{2}\int\sqrt{u}du = \frac{1}{2}\int u^{\frac{1}{2}}du \\[2ex]
\int (x+1)\sqrt{2x+x^{2}}dx &= \frac{1}{2}\int\sqrt{u}du = \frac{1}{2}\int u^{\frac{1}{2}}du \\[2ex]
 
&= \frac{1}{2}({\frac{2u^\frac{3}{2}}{3}}) + C \\[2ex]
 
&= \frac{1}{3}(u^{\frac{3}{2}}) + C \\[2ex]
 
&= \frac{1}{3}(2x+x^{2})^{\frac{3}{2}} + C \\[2ex]


\end{align}
\end{align}
</math>
</math>

Latest revision as of 21:28, 22 September 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int (x+1)\sqrt{2x+x^{2}}dx }


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &=2x+x^{2} \\[2ex] du &=2+2x dx \\[2ex] \frac{1}{2}du &=x+1 \end{align} }


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int (x+1)\sqrt{2x+x^{2}}dx &= \frac{1}{2}\int\sqrt{u}du = \frac{1}{2}\int u^{\frac{1}{2}}du \\[2ex] &= \frac{1}{2}({\frac{2u^\frac{3}{2}}{3}}) + C \\[2ex] &= \frac{1}{3}(u^{\frac{3}{2}}) + C \\[2ex] &= \frac{1}{3}(2x+x^{2})^{\frac{3}{2}} + C \\[2ex] \end{align} }