5.5 The Substitution Rule/11: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 18: | Line 18: | ||
\begin{align} | \begin{align} | ||
\int (x+1)\sqrt{2x+x^{2}}dx &= \frac{1}{2}\int\sqrt{u}du | \int (x+1)\sqrt{2x+x^{2}}dx &= \frac{1}{2}\int\sqrt{u}du = \frac{1}{2}\int u^{\frac{1}{2}}du \\[2ex] | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Revision as of 21:18, 22 September 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &=2x+x^{2} \\[2ex] du &=2+2x dx \\[2ex] \frac{1}{2}du &=x+1 \end{align} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int (x+1)\sqrt{2x+x^{2}}dx &= \frac{1}{2}\int\sqrt{u}du = \frac{1}{2}\int u^{\frac{1}{2}}du \\[2ex] \end{align} }