5.5 The Substitution Rule/11: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
(Created page with "<math> \int (x+1)\sqrt{2x+x^{2}}dx </math> <math> \begin{align} u &=2x+x^{2} \\[2ex] du &=2+2x dx \\[2ex] \frac{1}{2}du &=x+1 \end{align} </math>")
 
No edit summary
Line 9: Line 9:
du &=2+2x dx \\[2ex]
du &=2+2x dx \\[2ex]
\frac{1}{2}du &=x+1  
\frac{1}{2}du &=x+1  
\end{align}
</math>
<math>
\begin{align}
\int (x+1)\sqrt{2x+x^{2}}dx &= \frac{1}{2}\int\sqrt{u}du &= \frac{1}{2}\int u^{\frac{1}{2}}du \\[2ex]


\end{align}
\end{align}
</math>
</math>

Revision as of 20:09, 22 September 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int (x+1)\sqrt{2x+x^{2}}dx }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &=2x+x^{2} \\[2ex] du &=2+2x dx \\[2ex] \frac{1}{2}du &=x+1 \end{align} }

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\int (x+1){\sqrt {2x+x^{2}}}dx&={\frac {1}{2}}\int {\sqrt {u}}du&={\frac {1}{2}}\int u^{\frac {1}{2}}du\\[2ex]\end{aligned}}}