5.5 The Substitution Rule/5: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 16: Line 16:
\begin{align}
\begin{align}
\int \cos^{3}{(\theta)}\sin{(\theta)}d{(\theta)} = \-int u^{3}du
\int \cos^{3}{(\theta)}\sin{(\theta)}d{(\theta)} = \-int u^{3}du
&= \frac{-u^{4}}{4} + C = \frac{-\cos^{4}{(\theta)}}{4} + C
&= \frac{-1}{4}\cos^{4}{(\theta)} + C


\end{align}
\end{align}
</math>
</math>

Revision as of 19:40, 22 September 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int \cos^{3}{(\theta)}\sin{(\theta)}d{(\theta)} \text{,} \quad u=\cos{(\theta)} }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &=\cos{(\theta)} \\[2ex] du &=-\sin{(\theta)}d{(\theta)} \\[2ex] -du &=\sin{(\theta)}d{(\theta)} \end{align} }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int \cos^{3}{(\theta)}\sin{(\theta)}d{(\theta)} = \-int u^{3}du \end{align} }